
The
Wilsonian

Flux
Issue 3 / March 2025 - Maths

Welcome to Issue 3 of the Wilsonian Flux and a warm welcome to all the mathematicians.
The Wilsonian Flux aims to introduce content that you may find interesting, and that will
hopefully encourage you to learn more and challenge yourself. The maths this week focuses
on linear algebra, as well as Markov chains, which are stochastic models useful in probability.

Contents

1 Solving systems of linear equations using matrices 2
1.1 Introduction . 2
1.2 Gauss-Jordan Elimination . 2
1.3 Cramer’s Method . 4

2 A brief introduction to Markov chains 6
2.1 Bayes’ Theorem . 6
2.2 Markov Chains . 6
2.3 Does Every Markov Chain Have a Steady State? 9
2.4 Hidden Markov Chain Models . 11

3 Problems 13

Figure 1: Portrait of Carl Friedrich Gauss

1

1 Solving systems of linear equations using matrices

Written by Adhrit, Year 12

1.1 Introduction

Solving linear sets of simultaneous equations is an area of maths that appears everywhere
in maths. Therefore, it is important to get a strong grasp and understanding of how their
solutions can be computed in different ways. Matrices provide a clear, concise way of solving
these systems of equations, and we’ll explore two methods in this article.

1.2 Gauss-Jordan Elimination

Perhaps the more commonly known method, the essence of this method is to use row elim-
inations to find the solutions to a system of linear equations. Let me demonstrate; take the
system:

a1x1 + a2x2 + a3x3 = b1

a4x1 + a5x2 + a6x3 = b2

a7x1 + a8x2 + a9x3 = b1

where an and bn are constants and xn are variables. This can be written in the form of an
augmented matrix: a1 a2 a3 b1

a4 a5 a6 b2
a7 a8 a9 b3


where the solid line in the middle can also be dotted or omitted completely.

The end goal of this method is to to end up with a matrix of the form:1 0 0 y1
0 1 0 y2
0 0 1 y3


where yn will be the solution for xn. This form of the matrix is called the row-echelon form.
How do we get there? Through row eliminations. Simply put, we want to add or subtract
multiples of one row from another to replace that row with something different, and keep
going until we achieve row-echelon form. There are 3 types of row operations:

• Swapping the position of two rows

• Multiplying a row by a scalar value

• Add or subtract the scalar multiple of one row from another

Take the system of equations:

2x + 3y = 13
4x + 5y = 23

This can be written as [
2 3 13
4 5 23

]

2

We can now subtract 2 lots of row one (2R1) from row two (R2), to get:[
2 3 13
0 −1 −3

]

Now multiply the second row by -1: [
2 3 13
0 1 3

]

Followed by R1 − 3R2: [
2 0 4
0 1 3

]

And finally dividing R1 by 2 to achieve row echelon form and obtaining our solutions:[
1 0 2
0 1 3

]

So we see that x = 2 and y = 3.
We can apply a similar method to solve a system with 3 variables and 3 equations:

x + 2y + 3z = 11
3x + 7y + 11z = 8
2x + 4y + 7z = 2

which is represented as 1 2 3 1
3 7 11 8
2 4 7 2


Subtracting R3 then R1 from R2: 1 2 3 1

0 1 1 5
2 4 7 2


Then R3 − 2R1: 1 2 3 1

0 1 1 5
0 0 1 0


Followed by R2 − R3: 1 2 3 1

0 1 0 5
0 0 1 0


And finally R1 − 2R2 − 3R3: 1 0 0 −9

0 1 0 5
0 0 1 0



3

Giving us x = −9, y = 5 and z = 0.
Admittedly, the operations required may at first seem rather random, but developing an

intuition for how to most efficiently put a matrix into row echelon form will come with time.
This method can be extended to a system of n equations containing n variables, it will just
take longer.

A little more on the row echelon form - consider the general row echelon matrix:
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
0 0 1 · · · 0 a3
...
0 0 0 · · · 1 an


The rank of this system is the number of leading 1s down the main diagonal. If the rank is
equal to the number of columns in the matrix, then there is one solution to the system of
equations. However, it is not always possible to have 1s on the whole leading diagonal. When
this is the case, where the rank is less than the number of columns in the matrix, then there
are either zero solutions to this system, or an infinite amount.

1.3 Cramer’s Method

For this method, you should be comfortable with working out the discriminant of matrices.
That is:

A =
[
a b
c d

]
=⇒ |A| = ad − bc

and for a 3x3 matrix:

A =

a b c
d e f
g h i

 =⇒ |A| = a

∣∣∣∣∣e f
h i

∣∣∣∣∣− b

∣∣∣∣∣d f
g i

∣∣∣∣∣+ c

∣∣∣∣∣d e
g h

∣∣∣∣∣
Now let’s consider our set of equations from earlier:

a1x1 + a2x2 + a3x3 = b1

a4x1 + a5x2 + a6x3 = b2

a7x1 + a8x2 + a9x3 = b1

Cramer’s rule tells us that:

xn = |An|
|A|

4

where A is the coefficient matrix:

A =

a1 a2 a3
a4 a5 a6
a7 a8 a9


and An is the coefficient matrix A but with the nth column replaced with the constants
b1 . . . bn, such that:

A1 =

b1 a2 a3
b2 a5 a6
b3 a8 a9

 , A2 =

a1 b1 a3
a4 b2 a6
a7 b3 a9

 and A3 =

a1 a2 b1
a4 a5 b2
a7 a8 b3


Let’s demonstrate.

x1 + 3x2 = 5
2x1 + 2x2 = 6

has a coefficient matrix:

A =
[
1 3
2 2

]
|A| = (1)(2) − (3)(2) = −4

So now to find x1 we compute the determinant of A1:

A1 =
[
5 3
6 2

]
|A1| = (5)(2) − (3)(6) = −8

x1 = |A1|
|A|

= −8
−4 = 2

A similar process with A2 yields that x2 = 1, and so we have found the solutions to our
system of equations. We could easily apply this to a 3x3 matrix system as well.

Cramer’s method easily highlights when a system of equations lacks solutions or has in-
finitely many. As the solution for xn is |An| ÷ |A|, when |A| = 0 - the coefficient matrix is
singular - it will be impossible to find a solution.

There are many other ways of solving systems of linear equations; these are just two
methods where matrices are used to do so. Some methods will be more efficient than others
in certain scenarios, so just use whichever is preferred by you.

5

2 A brief introduction to Markov chains

Written by Hritesh, Year 12

2.1 Bayes’ Theorem

Bayes’ theorem describes how to update probabilities based on new evidence:

P (A | B) = P (B | A)P (A)
P (B)

where:

• P (A | B) is the probability of event A given that B has occurred (posterior probability).

• P (B | A) is the probability of observing B if A is true (likelihood).

• P (A) is the prior probability of A.

• P (B) is the total probability of B, computed as:

P (B) = P (B | A)P (A) + P (B | Ac)P (Ac)

Example

Suppose a disease affects 1% of a population, and a test correctly identifies a sick person
95% of the time but falsely identifies a healthy person as sick 5% of the time. What is the
probability that a person who tested positive actually has the disease?

Using Bayes’ Theorem:
P (D | T) = P (T | D)P (D)

P (T)
where:

• P (D) = 0.01 (prior probability of disease),

• P (T | D) = 0.95 (test sensitivity),

• P (T | ¬D) = 0.05 (false positive rate),

• P (T) = P (T | D)P (D) + P (T | ¬D)P (¬D)

= (0.95)(0.01) + (0.05)(0.99) = 0.059.

Thus:
P (D | T) = 0.95 × 0.01

0.059 ≈ 0.161.

So, despite testing positive, there is only a 16.1% chance the person actually has the disease.

2.2 Markov Chains

To understand Markov chains, let us begin with an example. Suppose we have a restaurant
that serves a Burger, a Pizza, or a Sandwich. On any given day, the restaurant serves only
one of these items, and it depends on what they served the previous day. In other words, you
can predict what the restaurant will serve tomorrow, given that you know what they served
today.

Figure 2 shows weighted arrows going from the current state (the meal today) to a future
state (the meal tomorrow). These are known as transitions. The numbers are the probabilities

6

Figure 2: Transition diagram for the restaurant’s menu choices.

of transitioning from one state to another. The diagram representing our example is a Markov
Chain: a random process that moves from one state to another in a sequence of steps, where
the probability of moving to the next state depends only on the current state and not on how
you got there.

We can represent this mathematically as:

P (Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = xn+1 | Xn = xn)

where:

• Xi is the random variable representing the state at step i

• xi is a specific state that the process can occupy at step i

In simple terms:

P (Future event | Past + Present) = P (Future Event | Present),

Now, when dealing with multiple states, representing the information using weighted arrows
becomes messy and complicated. We can therefore use a Transition Matrix to represent the
probabilities of moving between states. For our restaurant example, a transition matrix would
look like this:

P =

0.4 0.3 0.3
0.5 0.4 0.1
0.9 0.05 0.05


Each row of the matrix corresponds to the current state (in our example, it goes Burger, then
Pizza, then Sandwich), and each column corresponds to the next state (again, Burger, then
Pizza, then Sandwich). The entry pij represents the probability of transitioning from state i
(row) to state j (column). For example, p12 = 0.3 indicates that if the restaurant served a
Burger today, there is a 30% chance it will serve a Pizza tomorrow.

Initial and Final States in Markov Chains

An important aspect of understanding Markov chains is recognizing how the process is influ-
enced by its starting point and how it behaves in the long run. In many practical applications,
two concepts often arise: the initial state (or initial distribution) and the final state (or
steady-state distribution).

7

Initial State

The initial state is essentially the starting configuration (or starting point) of the system. It
tells us the probability of being in each state at time t = 0. For instance, if we are absolutely
sure that the system begins in the Burger state, we might represent the initial state as:

π(0) =
(
1 0 0

)
where:

• π(0) represents the inital state (not 3.14159...),

indicating a 100% chance of starting at Burger and 0% at Pizza or Sandwich. In cases where
there is uncertainty in where we are ,when t = 0, the initial state is described by a probability
vector that sums to 1 (e.g., π(0) =

(
0.5 0.3 0.2

)
). As the system evolves, the transition

matrix is repeatedly applied to this initial vector to update the state probabilities.

Example: Evolving the Initial State Vector

Suppose the initial state is given by

π(0) =
(
0.5 0.3 0.2

)
where:

• 0.5 indicates a 50% chance that the restaurant is serving a Burger,

• 0.3 indicates a 30% chance that the restaurant is serving a Pizza,

• 0.2 indicates a 20% chance that the restaurant is serving a Sandwich.

Now, consider the same transition matrix as before:

P =

0.4 0.3 0.3
0.5 0.4 0.1
0.9 0.05 0.05


The state distribution after one transition, denoted π(1), is obtained by multiplying the

initial state vector by the transition matrix:

π(1) = π(0)P

We calculate each component of π(1) as follows:

(
0.5 0.3 0.2

)
·

0.4 0.3 0.3
0.5 0.4 0.1
0.9 0.05 0.05

 =

 0.5 × 0.4 + 0.3 × 0.5 + 0.2 × 0.9
0.5 × 0.3 + 0.3 × 0.4 + 0.2 × 0.05
0.5 × 0.3 + 0.3 × 0.1 + 0.2 × 0.05



 0.2 + 0.15 + 0.18
0.15 + 0.12 + 0.01
0.15 + 0.03 + 0.01

 =
(
0.53, 0.28, 0.19

)

Thus, the updated state vector is

π(1) =
(
0.53 0.28 0.19

)
8

Now, we compute π(2), which represents the state probabilities on the second day:

π(2) = π(1) · P

Substituting π(1) from the previous calculation:

(
0.53 0.28 0.19

)
·

0.4 0.3 0.3
0.5 0.4 0.1
0.9 0.05 0.05

 =

 0.53 × 0.4 + 0.28 × 0.5 + 0.19 × 0.9
0.53 × 0.3 + 0.28 × 0.4 + 0.19 × 0.05
0.53 × 0.3 + 0.28 × 0.1 + 0.19 × 0.05



 0.212 + 0.14 + 0.171
0.159 + 0.112 + 0.0095
0.159 + 0.028 + 0.0095

 =
(
0.523, 0.2805, 0.1965

)

From this pattern, we can generalize the probability vector at step n:

π(n) = π(0)P n

where:

• π(n) represents the state probabilities after n days,

• P n is the transition matrix raised to the power of n,

• π(0) is the initial state probability vector.

In the long run, as n → ∞, π(n) will converge to a steady-state distribution π∗, which
satisfies:

π∗ = π∗P

This means that at equilibrium, applying the transition matrix does not change the probabilities
anymore. The steady state can be found by solving:

π∗(I − P) = 0

subject to the constraint that the probabilities sum to 1:∑
i

π∗
i = 1

2.3 Does Every Markov Chain Have a Steady State?

For a Markov chain to have a steady-state distribution, it must satisfy the following conditions:

1. Irreducibility: The chain must be able to reach any state from any other state, possibly
in multiple steps. If there are isolated groups of states that the process can never leave,
then there may not be a single steady-state distribution.

2. Aperiodicity: The system should not be stuck in cycles. If a state is only revisited at
fixed intervals (like every 2 or 3 steps), then the probabilities won’t settle into a single
steady state.

3. Finite or Well-Behaved Infinite State Space: If the number of states is infinite, we
need additional checks to ensure probabilities don’t spread out too much over time.

If these conditions are met, the Markov chain will have a unique steady-state distribution.

9

How to Check for a Steady State

To determine whether a Markov chain has a steady state, follow these tests:

• Check if the transition matrix is irreducible: Can every state be reached from any
other state in some number of steps? If yes, it’s irreducible.

• Check for periodicity: If there’s a fixed cycle in the state transitions, then the chain
is periodic. To test this, pick a state and find the greatest common divisor (gcd) of all
possible step lengths that return to that state. If gcd = 1, the chain is aperiodic.

• Compute the steady-state probabilities: Solve the equation π∗P = π∗ and check if
a valid probability distribution (summing to 1) exists (which we are about to do with the
example).

If all these tests pass, the Markov chain will converge to a steady state over time. Otherwise,
it might oscillate between states or never settle into a stable pattern.

How to Calculate the Steady State

Let us return to our previous example to calculate the steady state.
We are given the transition matrix:

P =

0.4 0.3 0.3
0.5 0.4 0.1
0.9 0.05 0.05


To find the steady-state distribution π∗, we need to solve the equation:

π∗P = π∗

This results in the following system of linear equations:

π∗
1 = 0.4π∗

1 + 0.5π∗
2 + 0.9π∗

3

π∗
2 = 0.3π∗

1 + 0.4π∗
2 + 0.05π∗

3

π∗
3 = 0.3π∗

1 + 0.1π∗
2 + 0.05π∗

3

In addition, the sum of the probabilities must be 1:

π∗
1 + π∗

2 + π∗
3 = 1

We can solve this system of linear equations using either matrix methods or substitution. I
will leave it up to the reader to try it out for themselves.

In the end, solving the system of equations, you should obtain the steady-state probabilities:

π∗
1 ≈ 0.5256, π∗

2 ≈ 0.2791, π∗
3 ≈ 0.1953.

Thus, the steady-state distribution is approximately:

π∗ =
(
0.5256 0.2791 0.1953

)
This means that, in the long run, the system will spend about 52.56% of the time in state 1
(Burger), 27.91% of the time in state 2 (Pizza), and 19.53% of the time in state 3 (Sandwich).

10

2.4 Hidden Markov Chain Models

In many real-world cases, the important parts of a process (the states in a Markov Chain)
are hidden from us. Take speech recognition as an example: when someone speaks, we don’t
directly hear the individual sounds (called phonemes) that make up the words. Instead, we
only get the overall sound that comes out of the speaker’s mouth—the acoustic signal. Hidden
Markov Models help us work backwards from that sound to figure out which phonemes (and
ultimately, which words) were intended. In these cases, we can use Hidden Markov Models
(HMMs) which are statistical models in which the system being modeled is assumed to be
a Markov process with unobservable (hidden) states. In an HMM, the actual state of the
system is not directly visible; instead, an observer only has access to a set of observations
that provide informations about the probabilities of these hidden states. An HMM is defined
by:

• States: A finite set of hidden states S = {s1, s2, . . . , sN}.

• Transition Probabilities: A matrix A = [aij] where aij = P (sj | si) represents the
probability of transitioning from state si to state sj.

• Observation Probabilities: A set of probabilities B = {bj(o)} where bj(o) = P (o | sj)
is the probability of observing o given that the system is in state sj.

• Initial Distribution: A vector π = (π1, π2, . . . , πN) representing the probability of the
system starting in each state.

The key difference between a standard Markov chain and an HMM is that in an HMM the
states are hidden; only outputs (observations) that are probabilistically related to the states
are visible. Common tasks when working with HMMs include:

• Decoding: Determining the most likely sequence of hidden states given a sequence of
observations.

• Evaluation: Computing the likelihood of an observed sequence
These can be done with different algorithms such as the Forward algorithm and the
Viterbi algorithm, which I am going to leave to the reader to research further.

Applications of Markov Chains

At first glance, the theory of Markov chains may seem unimpressive due to its simplicity and
reliance on the current state to predict future states. However, this very simplicity makes
Markov chains a powerful and useful model across various fields.

1. Google PageRank Algorithm: Markov chains are fundamental to Google’s PageRank
algorithm, which ranks web pages based on their link structures. The algorithm treats
web pages as states and the links between them as transitions, utilizing the Markov
property to determine the probability of a user visiting a particular page.

2. Weather Prediction: In meteorology, Markov chains model weather patterns by repre-
senting different weather states (e.g., sunny, rainy) and the probabilities of transitioning
from one state to another. This approach helps in forecasting future weather conditions
based on current observations.

3. Financial Modeling: Markov chains are used in finance to model stock prices and
market behaviors. By analyzing the probabilities of different market states, investors can
assess risks and make informed decisions.

11

4. Machine Learning: Markov chains are vital in machine learning for modeling sequential
data and building probabilistic models. Hidden Markov Models (HMMs) use the Markov
property to predict future states and are applied in speech recognition, natural language
processing, and bioinformatics.

This is by far no means a comprehensive guide to Markov models and in the future, I may
talk about Monte Carlo Simulations and expand upon the theory here to cover Markov Chain
Monte Carlo simulations and Bayesian statistics

12

3 Problems

Solving systems of linear equations using matrices

Any system of linear equations that you can practice solving. Here’s one:

2α + 7β − γ = −31
2

3α + 2β − 3γ + 4δ = −71
−α + 6β + 2δ = −19

5α − 4β + γ − 2δ = 42

A brief introduction to Markov Chains

1. Consider the following transition matrix for a simple weather model where the states are
”Sunny” (S) and ”Rainy” (R):

P =
(

0.8 0.2
0.4 0.6

)
where the first row represents the transition probabilities from ”Sunny” to ”Sunny”
(0.8) and from ”Sunny” to ”Rainy” (0.2) and the second row represents the transition
probabilities from ”Rainy” to ”Sunny” (0.4) and from ”Rainy” to ”Rainy” (0.6).

(a) If the weather is ”Sunny” on day 0, calculate the weather probabilities for day 1.
(b) What will the weather probabilities be on day 2, given that the weather on day 0

was ”Sunny”?
(c) Determine the steady-state distribution for this weather model.

2. You are given the following transition matrix for a system that describes a simple game
between two players, where they can either win (W) or lose (L) each round:

P =
(

0.6 0.4
0.3 0.7

)
.

(a) If the game starts with player 1 winning, calculate the probabilities of each player
winning in the following rounds.

(b) What is the long-term probability of player 1 winning the game?

Solutions

Solutions to the problems from this issue will feature in the next issue!

Credits

Edited by Vivaan.
A special thanks to Mr Carew-Robinson and Mr Hudson for their help and support in

running the publication.

13

	Solving systems of linear equations using matrices
	Introduction
	Gauss-Jordan Elimination
	Cramer's Method

	A brief introduction to Markov chains
	Bayes’ Theorem
	Markov Chains
	Does Every Markov Chain Have a Steady State?
	Hidden Markov Chain Models

	Problems

