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Welcome to Issue 3 - I hope your exams went swimmingly. We’ve decided to expand horizons
to both maths and physics, and so it makes more sense to have separate maths and physics
articles. This month, we focus on quantum physics; this might be slightly less relevant to
an engineer and slightly more relevant to a physicist - but should be interesting nonetheless.
Most of the articles are quite mathematically rigorous, and so being comfortable with linear
algebra and differential equations would be extremely helpful, alongside other concepts such
as partial derivatives as well as Taylor and Fourier series. Most of these should be familiar
either through A-Level maths or through previous issues.
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Figure 1: Bohr and Heisenberg meet in a Nazi-occupied Copenhagen in September 1941 [1]

1 An introduction to quantum mechanics

Written by Christian, Year 13

1.1 Introduction

At the end of the 20th century, many physicists were of the opinion that almost all major
physics had been discovered. However, a few unexplainable problems, such as the ultraviolet
catastrophe and Max Planck’s discovery of energy quanta, would soon overturn that belief
and open the eyes of physicists, showing them just how little they really knew at the time.
What I want to achieve in this very brief introduction to quantum theory is to show you
the foundations on which the theory rests and to show you how they can lead you to one
of the most important results in quantum mechanics - the wavefunction of the electron in
the hydrogen atom. Quantum mechanics is very often regarded as a counter-intuitive subject
which is difficult to grasp, but I find many of its concepts rather elegant and the tools for
understanding them are quite versatile, and so I believe that there is worth in knowing at least
a bit about the subject at this stage.

1.2 The Wavefunction and the Statistical Interpretation

In classical (Newtonian) mechanics, the problem to be solved in order to describe the evolution
of a system is to find solutions to the equation F = ma. Once we have armed ourselves
with the acceleration of the object of interest, we can use basic calculus to find its velocity
and displacement as functions of time as well as parameters such as its kinetic energy and
momentum. Another way of writing Newton’s second law is as follows; the acceleration of
an object is equivalent to the second derivative of its displacement with respect to time, and
the force on an object (for conservative systems, which are the only kind that we will explore
at the microscopic level) is equivalent to the negative of the partial derivative of its potential
energy with respect to displacement, so F = ma becomes:

−∂V

∂x
= m

d2x

dt2

This much more general formulation of Newton’s second law, along with initial conditions,
such as the position and velocity of the object at t = 0 allows us to solve for the displacement
of an object as a function of time, and so all other parameters of interest of the system.

2



Quantum mechanics approaches the same problem, but in quite a different way. The
equation of interest in quantum mechanics, developed in 1926 by Erwin Schrödinger, aptly
named after him, solves for something called the wavefunction of the particle, Ψ(x, t), and is
given by:

iℏ
∂Ψ
∂t

= − ℏ2

2m
∂2Ψ
∂x2 + VΨ (2.1)

Here, i is the square root of −1, and ℏ is Planck’s constant divided by 2π:

ℏ = h

2π = 1.054573 × 10−34 J s (2.2)

The Schrödinger equation plays a role analogous to Newton’s second law: Given suitable
initial conditions (typically Ψ(x, 0)), the Schrödinger equation determines Ψ(x, t) for all future
time, just as how, in classical mechanics, Newton’s law determines x(t) for all future time.
Schrödinger developed his equation based on principles related to the wave equation, since its
goal was to describe the wave properties of matter. Unfortunately, I do not have time to go
into its derivation, so I refer you to Phillip’s section of this Flux issue. I definitely encourage
you to look at it, considering the incredible appearance of an imaginary number in such a
fundamental equation of nature!

Now you may ask, what exactly is the wavefunction? The answer is given by Max Born’s
statistical interpretation, which tells you that |Ψ(x, t)|2 gives you the probability of finding
the particle at a point x, at a time t. More precisely:

∫ b

a
|Ψ(x, t)|2 dx =

{
probability of finding the particle
between a and b, at time t. (2.3)

As Ψ(x, t) is a complex function, |Ψ|2 = Ψ∗Ψ (where Ψ∗ is the complex conjugate of Ψ).
A key feature of the wavefunction is something known as wavefunction collapse. If you
measure a particle, its wavefunction collapses to a particular value, such that an immediate
re-measurement of the particle will yield exactly the same values of position, momentum,
etc. as the initial measurement. The phenomenon by which the wavefunction collapses is
still not exactly known, and is one of the most important unanswered questions in quantum
mechanics. Another key feature of the wave function is that:∫ +∞

−∞
|Ψ(x, t)|2 dx = 1 (2.4)

This must obviously be true as the total probability must always equal 1 - the particle must be
somewhere. What this means is that we have to multiply the wavefunction by some (complex)
constant such that the above condition always holds - this process is called normalizing the
wavefunction. Normalizing the wavefunction at t = 0 ensures that it remains normalized for
all future t, although the proof of this is not something I will go into.

1.3 Operators and Heisenberg’s Uncertainty Principle

From the properties of continuous random variables in statistics, we know that the expectation
value of a variable, x, is given by:

⟨x⟩ =
∫ +∞

−∞
xρ(x) dx (3.1)
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Where ρ(x) is the probability density of x. However, we have just learned that the probability
density of x for a quantum mechanical object is given by |Ψ(x, t)|2, so we can write:

⟨x⟩ =
∫ +∞

−∞
x|Ψ(x, t)|2 dx (3.2)

Logically, what the above equation means is that if you prepare a whole ensemble of particles,
each in the same state Ψ, and measure the positions of all of them, ⟨x⟩ is the average of
these results. Be careful - this is different from saying that this is the average result you
get when measuring the position of one particle over and over again. On the contrary, the
first measurement would cause the wavefunction to collapse, so all subsequent measurements
would return the same result!

What if we wanted to find the expectation value of some other variable of the system? We
use the appropriate operator for that variable, by “sandwiching” the operator between Ψ∗

and Ψ and integrating as we did above. For example, the expectation value for the momentum
of a particle (the derivation of this is encouraged as an exercise for the reader - consider the
rate of change of position) is given by:

⟨p⟩ =
∫ +∞

−∞
Ψ∗

[
−iℏ ∂

∂x

]
Ψ dx (3.3)

And the expectation value for the position of a particle is given by:

⟨x⟩ =
∫ +∞

−∞
Ψ∗ [x] Ψ dx (3.4)

We say that the operator x ”represents” position, and the operator −iℏ(∂/∂x) ”represents”
momentum. In general, operators are mathematical objects that act on quantum states to
return the value of a variable of that quantum state, and are represented using hats on top
of the letter representing the operator. For position and momentum, these are:

x̂ = x (3.5)

p̂ = −iℏ ∂
∂x

(3.6)

Furthermore, all classical variables can be expressed in terms of position and momentum,
so to calculate the expectation of any such quantity, Q(x, p), we simply replace every p by
−iℏ(∂/∂x), then insert the resulting operator between Ψ∗ and Ψ and integrate (I am removing
the bounds of integration to avoid too much cluttering):

⟨Q(x, p)⟩ =
∫

Ψ∗ [Q(x,−iℏ∂/∂x)] Ψ dx (3.7)

Before we proceed, there is a very important condition that measured variables must satisfy,
which you should be aware of. This is the very famous Heisenberg Uncertainty Principle
and it goes as follows:

σxσp ≥ ℏ
2 (3.8)

What this is saying is that the standard deviation in the measured position of a particle,
multiplied by the standard deviation in the measured momentum of that particle, must always
be greater than or equal to the above value (where the standard deviations are calculated in
the usual way, using expectation values). In other words, you can never exactly know both the
momentum and position of a particle, and the more precisely you know one, the less precisely
you know the other. The proof for this uncertainty principle comes from a derivation of the
general uncertainty principle, which is covered in Phillip’s part of this Flux issue, so please
refer to that if interested!
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1.4 The Time-Independent Schrödinger Equation and Stationary States

Now that we have the basic preliminaries to understand the meaning behind the Schrödinger
equation, let us try solving it. To get Ψ(x, t), we need to solve the Schrödinger equation for
a specific potential, V (x) (all potentials I will cover are assumed to be independent of time).
As the Schrödinger equation is something known as a partial differential equation, we can use
a special method for solving it known as separation of variables. This is when we look for
solutions which are products:

Ψ(x, t) = ψ(x)φ(t) (4.1)
If you aren’t convinced that this is a solution, feel free to manually check that the solutions
obtained at the end satisfy the Schrödinger equation. At first glance, it may seem like there
is no way that this gives us all possible solutions to the Schrödinger equation - all I ask is that
you be patient and prepare to have your minds blown. For these separable solutions:

∂Ψ
∂t

= ψ
dφ

dt
,

∂2Ψ
∂x2 = d2ψ

dx2 φ

So the Schrödinger equation reads:

iℏψ
dφ

dt
= − ℏ2

2m
d2ψ

dx2 φ+ V ψφ

Dividing through by ψφ:

iℏ
1
φ

dφ

dt
= − ℏ2

2m
1
ψ

d2ψ

dx2 + V (4.2)

Now, here is the important bit. The left hand side is a function of t alone, and the right
side is a function of x alone. The only way that this could be true is if both sides are in fact
constant - otherwise, by varying t, I could change the left side without touching the right
side, and the two would no longer be equal. I will choose to call this separation constant E
for reasons that will become apparent soon. Then,

iℏ
1
φ

dφ

dt
= E

or
dφ

dt
= −iE

ℏ
φ (4.3)

and
− ℏ2

2m
1
ψ

d2ψ

dx2 + V = E

or

− ℏ2

2m
d2ψ

dx2 + V ψ = Eψ (4.4)

The first of these equations is easy to solve, and the general solution (for simplicity, I will
absorb the constant factor in front of the solution into ψ, since the quantity of interest is the
product ψφ) is:

φ(t) = e−iEt/ℏ (4.5)
The second, and more significant equation is called the time-independent Schrödinger
equation, and we cannot solve it until we are given a specific potential V (x). It is important to
distinguish between this and Ψ(x, t), which is the time-dependent Schrödinger equation.

Before I continue, there are three important features of the above separable solutions which
I will mention, but not prove here:
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1. They are stationary states. Although the wave function itself,

Ψ(x, t) = ψ(x)e−iEt/ℏ (4.6)

does obviously depend on t, the probability density,

|Ψ(x, t)|2 = Ψ∗Ψ = ψ∗e+iEt/ℏψe−iEt/ℏ = |ψ(x)|2 (4.7)

does not - the time dependence cancels out. The same thing happens in calculating the
expectation value of any dynamical variable of interest; Equation 3.7 reduces to:

⟨Q(x, p)⟩ =
∫
ψ∗
[
Q

(
x,−iℏ d

dx

)]
ψ dx (4.8)

Every expectation value is constant in time, so we might as well drop the factor φ(t)
altogether, and simply use ψ instead of Ψ - remember, though, that the full solution to
the Schrödinger equation will be the function Ψ and not ψ; this is just for our convenience
when calculating things such as expectation values. In particular ⟨x⟩ is constant, and
hence ⟨p⟩ = 0. Nothing ever happens in a stationary state, hence the name.

2. They are states of definite total energy. In classical mechanics, the total energy (kinetic
plus potential) is called the Hamiltonian:

H(x, p) = p2

2m + V (x) (4.9)

The corresponding Hamiltonian operator is therefore:

Ĥ = − ℏ2

2m
∂2

∂x2 + V (x) (4.10)

Thus the time-independent Schrödinger equation can be written:

Ĥψ = Eψ (4.11)

Those of you proficient at linear algebra may recognise this as an eigenvalue equation
- if interested, please look at Vivaan’s section on linear algebra. Using this result, it is
quite trivial to prove that:

σH = 0 (4.12)
This means that, for separable solutions (in a stationary state), every measurement of
the total energy is certain to return the value E, hence why I chose that letter for the
separation constant earlier.

3. The general solution of the time-dependent Schrödinger equation is a linear combina-
tion of separable solutions. As we are about to see, the time-independent Schrödinger
equation yields an infinite collection of solutions (ψ1(x), ψ2(x), ψ3(x), . . .), each with
its associated separation constant (E1, E2, E3, . . .), thus there is a different wavefunc-
tion for each allowed energy:

Ψ1(x, t) = ψ1(x)e−iE1t/ℏ, Ψ2(x, t) = ψ2(x)e−iE2t/ℏ, . . .

Now, (as you can easily check yourself) the time-dependent Schrödinger equation has
the property that any linear combination of solutions is itself a solution. This means that
once we have found the separable solutions, we can immediately construct a much more
general solution, of the form:

Ψ(x, t) =
∞∑

n=1
cnψn(x)e−iEnt/ℏ (4.13)
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It so happens that every solution to the time-dependent Schrödinger equation can be
written in this form, as long as you find the right (complex) constants (c1, c2, . . .) so
as to fit the initial conditions for the problem at hand. Look! We’ve achieved what
we set out to do (partly) - evidently, all we need to do to find the solution to the time
dependent Schrödinger equation is to solve the time-independent Schrödinger equation,
followed by a couple of extra steps I will explain later on.

To summarise, here’s the generic problem we need to solve in quantum mechanics: You
are given a (time-independent) potential V (x), along with the starting wavefunction (initial
conditions) Ψ(x, 0) and have to find the wavefunction Ψ(x, t) for any subsequent time t. To
do this, you have to solve the time-independent Schrödinger equation, which yields an infinite
set of solutions {ψn(x)}, each with its own associated energy, {En}. To fit Ψ(x, 0), you write
down the general linear combination of these solutions:

Ψ(x, 0) =
∞∑

n=1
cnψn(x) (4.14)

The important point to note is that you can always match the specified initial state by an
appropriate choice of the constants {cn}. To construct Ψ(x, t) you simply tack onto each
term its characteristic time dependence (often called its ”wiggle factor” - don’t ask me why
physicists chose to name it that), exp(−iEnt/ℏ):

Ψ(x, t) =
∞∑

n=1
cnψn(x)e−iEnt/ℏ =

∞∑
n=1

cnΨn(x, t) (4.15)

The separable solutions themselves,
Ψn(x, t) = ψn(x)e−iEnt/ℏ (4.16)

are stationary states, in the sense that all probabilities and expectation values are independent
of time (a property which is not shared by the general solution (Equation 4.15)).

To finish off, let us ask the question: what do the coefficients {cn} represent physically?
The answer (which I once again do not have time to prove here) is that:

|cn|2
{

is the probability that a measurement of the
energy would return the value En.

(4.17)

Naturally, the sum of these probabilities should be 1:
∞∑

n=1
|cn|2 = 1 (4.18)

and the expectation value of the energy must be:

⟨H⟩ =
∞∑

n=1
|cn|2En (4.19)

1.5 The Infinite Square Well

Let us now look at the simplest example of a potential ”well” that exists, to reinforce these
new concepts that we have learned and to smoothen the transition into the hydrogen atom.
Suppose we have a potential (Figure 5.1):

V (x) =

0, 0 ≤ x ≤ a

∞, otherwise
(5.1)

7



Figure 5.1: The infinite square well potential (Equation 5.1).

Outside the well, ψ(x) = 0, as the particle cannot have the infinite energy required to escape
the well, and so the probability of finding it there is 0. However, inside the well, where V = 0,
the time-independent Schrödinger equation becomes:

− ℏ2

2m
d2ψ

dx2 = Eψ (5.2)

or
d2ψ

dx2 = −k2ψ, where k ≡
√

2mE
ℏ

(5.3)

(I have assumed that E ≥ 0, since E < 0 won’t work here. Think about why this is, but I’ll
give you a hint; E must exceed V (x) for every normalizable solution to the time-independent
Schrödinger equation - try to show this).

Those of you who have studied simple harmonic motion will instantly recognise the
general solution to this equation as:

ψ(x) = A sin(kx) +B cos(kx) (5.4)

where A and B are arbitrary constants. Typically, these constants are fixed by the boundary
conditions of the problem, but what are the boundary conditions for ψ(x)? The short answer
is that both ψ(x) and dψ/dx are continuous, but where the potential goes to infinity, only
the first of these applies, and so that is the appropriate boundary condition to use in this case.

Therefore, continuity of ψ(x) requires that:

ψ(0) = ψ(a) = 0 (5.5)

so that the solution inside the well is ”joined” to the solution outside the well (remember that
ψ(x) = 0 outside the well). Using this, we can find A and B as follows:

ψ(0) = A sin(0) +B cos(0) = B

so B = 0 and hence:
ψ(x) = A sin(kx) (5.6)

Then ψ(a) = A sin(ka), so either A = 0 (in which case we are left with the trivial (non-
normalizable) solution ψ(x) = 0), or else sin(ka) = 0, which means that:

ka = 0, ±π, ±2π, ±3π, . . . (5.7)
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However, k = 0 is no good (since that again implies that ψ(x) = 0), and the negative
solutions give nothing new, since sin(−θ) = − sin(θ) and we can absorb the minus sign into
the constant A. Therefore, the distinct solutions are:

kn = nπ

a
, with n = 1, 2, 3, . . . (5.8)

But wait, we have determined possible values of k, not A! Don’t worry, we can now just use
normalization to find it. However, let us first find the possible values of E from these values
of k. From Equation 5.3, we obtain:

En = ℏ2k2
n

2m = n2π2ℏ2

2ma2 (5.9)

This result demonstrates a key concept in quantum mechanics. The energies of a particle
in the infinite square well cannot have just any energy - it has to be one of these special
”allowed” energies. We say that the energies are quantized.

Now, to find A, we simply normalize ψ (technically we should be normalizing Ψ(x, t), but
remember that for stationary states the ”wiggle factor” cancels out, so normalizing ψ(x) is
sufficient): ∫ a

0
|A|2 sin2(kx) dx = |A|2a2 = 1, so |A|2 = 2

a
This only determines the magnitude of A , but it is simplest to pick the positive real root:
A =

√
2/a, since the phase of A carries no physical significance anyway. This finally gives us

the solutions to the time-independent Schrödinger equation for the infinite square well:

ψn(x) =
√

2
a

sin
(
nπ

a
x
)

(5.10)

Figure 5.2: An infinite square well with the ground state and first excited state wavefunctions, ψ1 and
ψ2 (Equation 5.10).

Just as I mentioned above, we have gotten an infinite collection of solutions to the time-
independent Schrödinger equation (one for each positive integer n), each with its own as-
sociated energy. What you may notice is that these solutions look like standing waves on
a string of length a; ψ1, which carries the lowest energy, is called the ground state. The
others, whose energies increase in proportion to n2, are called excited states (Figure 5.2).
As a collection, the functions ψn(x) have some interesting and important properties that you
should be aware of:

1. They are alternately even and odd, with respect to the centre of the well: ψ1 is even,
ψ2 is odd, ψ3 is even, and so on.
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2. As you go up in energy, each successive state has one more node (zero-crossing): ψ1
has none (the end points don’t count), ψ2 has one, ψ3 has two, and so on.

3. They are mutually orthogonal, in the sense that:∫
ψm(x)∗ψn(x) dx = 0, (m ̸= n) (5.11)

I encourage the reader to try and prove this. Note that this does not work if m = n.
In that case normalization tells us that the integral is 1. In fact, we can combine
orthogonality and normalization into a single statement:∫

ψm(x)∗ψn(x) dx = δmn (5.12)

where δmn is the Kronecker delta function (you should recognise this from the previous
issue of the Wilsonian Flux), and is defined by:

δmn =

0, m ̸= n

1, m = n
(5.13)

We say that the ψs are orthonormal.

4. They are complete, in the sense that any other function, f(x), can be expressed as a
linear combination of them:

f(x) =
∞∑

n=1
cnψn(x) =

√
2
a

∞∑
n=1

cn sin
(
nπ

a
x
)

(5.14)

I’m definitely not going to prove the completeness of the functions here, but you should
recognise the above equation as nothing but the Fourier series for f(x) (see previous
issue of the Wilsonian Flux for Fourier series and transforms). The fact that ”any”
function can be expanded in this way is sometimes called Dirichlet’s theorem.
The coefficients cn can be evaluated - for a given f(x) - by a method known as Fourier’s
trick, which, in the words of David Griffiths, ”beautifully exploits the orthonormality of
{ψn}”: Multiply both sides of Equation 5.14 by ψm(x)∗, and integrate:∫

ψm(x)∗f(x) dx =
∞∑

n=1
cn

∫
ψm(x)∗ψn(x) dx =

∞∑
n=1

cnδmn = cm (5.15)

(Notice how the Kronecker delta kills every term in the sum except the one for which
n = m.) Thus, the nth coefficient in the expansion of f(x) is:

cn =
∫
ψn(x)∗f(x) dx (5.16)

These four properties are extremely powerful, and they are not specific to the infinite square
well. The first is true whenever the potential itself is a symmetric function; the second is
universal, regardless of the shape of the potential. Orthogonality is also quite general, and
completeness holds for all of the potentials you are likely to encounter.

The stationary states (Equation 4.16) of the infinite square well are:

Ψn(x, t) =
√

2
a

sin
(
nπ

a
x
)
e−i(n2π2ℏ/2ma2)t (5.17)
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Remember that the most general solution to the time-dependent Schrödinger equation is a
linear combination of stationary states (Equation 4.15):

Ψ(x, t) =
∞∑

n=1
cn

√
2
a

sin
(
nπ

a
x
)
e−i(n2π2ℏ/2ma2)t (5.18)

The last thing left to do is to demonstrate that you can fit any prescribed initial wave function,
Ψ(x, 0) by appropriate choice of the coefficients cn. The completeness of the ψs guarantees
that I can always express Ψ(x, 0) as I have in Equation 4.14, and their orthonormality licences
the use of Fourier’s trick to determine the actual coefficients:

cn =
√

2
a

∫ a

0
sin

(
nπ

a
x
)

Ψ(x, 0) dx (5.19)

So, the final solution to the time-dependent Schrödinger equation for the infinite square well
is:

Ψ(x, t) = 2
a

∞∑
n=1

[∫ a

0
sin

(
nπ

a
x
)

Ψ(x, 0) dx
]

sin
(
nπ

a
x
)
e−i(n2π2ℏ/2ma2)t (5.20)

And that’s it. Given an initial wavefunction, Ψ(x, 0), along with the size of the well, a, and
the mass of the particle of interest, m, we can calculate all values of interest of the system
for all future times, using the appropriate operators. We have effectively solved F = ma, but
for the quantum case! It is important to note, however, that the infinite square well is an
artificial potential - it doesn’t really exist in nature, but the results we have obtained so easily
due to its simplicity are of great importance. To finish off, we now move onto one of the
”simplest” and few real-life systems that can be solved exactly - the hydrogen atom. Prepare
yourselves, because it will be a very bumpy ride.

1.6 Quantum Mechanics in Three Dimensions

Until now, we have only been working with the Schrödinger equation in 1 dimension, Ψ(x, t),
and everything has been relatively simple. Thankfully, the generalization to 3 dimensions,
Ψ(x, y, z, t) is also relatively simple - it’s what comes after that is the difficult bit. In 3
dimensions, we need to consider all components of momentum, in the x, y and z directions,
so the Hamiltonian operator becomes:

Ĥ = 1
2m

(
p̂2

x + p̂2
y + p̂2

z

)
+ V

Where:
p̂x → −iℏ ∂

∂x
, p̂y → −iℏ ∂

∂y
, p̂z → −iℏ ∂

∂z
(6.1)

or
p → −iℏ∇ (6.2)

for short. (The upside down triangle is called nabla, for those interested.) Thus,

iℏ
∂Ψ
∂t

= − ℏ2

2m∇2Ψ + VΨ (6.3)

where
∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (6.4)
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is called the Laplacian, in Cartesian coordinates.
The potential energy V and the wave function Ψ are now functions of r = (x, y, z)

and t. The probability of finding the particle in the infinitesimal volume d3r = dx dy dz is
|Ψ(r, t)|2d3r, and the normalization condition reads:∫

|Ψ|2 d3r = 1 (6.5)

with the integral taken over all space. If V is independent of time (as it is in what comes
next), there will be a complete set of stationary states:

Ψn(r, t) = ψn(r)e−iEnt/ℏ (6.6)

where the spatial wave function ψn satisfies the time-independent Schrödinger equation:

− ℏ2

2m∇2ψ + V ψ = Eψ (6.7)

The general solution to the time-dependent Schrödinger equation is:

Ψ(r, t) =
∑

cnψn(r)e−iEnt/ℏ (6.8)

with the constants cn determined by the initial wave function, Ψ(r, 0), in the usual way. (If
the potential admits continuum states, then the sum in Equation 6.8 becomes an integral.)

However, for spherically symmetric (central) potentials such as that of the hydrogen
atom, where V is a function only of the distance from the origin, V (r) → V (r), it is much
easier and simpler to work with spherical coordinates, (r, θ, ϕ) (Figure 6.1).

Figure 6.1: Spherical coordinates: radius r, polar angle θ, and azimuthal angle ϕ.

In spherical coordinates the Laplacian takes the form:

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin(θ)

∂

∂θ

(
sin(θ) ∂

∂θ

)
+ 1
r2 sin2(θ)

(
∂2

∂ϕ2

)
(6.9)

Therefore, in spherical coordinates, the time-independent Schrödinger equation reads:

− ℏ2

2m

[
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1
r2 sin(θ)

∂

∂θ

(
sin(θ)∂ψ

∂θ

)
+ 1
r2 sin2(θ)

(
∂2ψ

∂ϕ2

)]
+ V ψ = Eψ (6.10)
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This might look like a crazy equation to try and solve at first, and I don’t blame you for
thinking that, considering that I literally had to make the text smaller to fit it on the page!
But trust me, you can definitely solve it. Let us proceed as we did with the time-dependent
Schrödinger equation and use separation of variables. Let’s assume a solution of the form:

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) (6.11)

Plugging this into Equation 6.10, we get:

− ℏ2

2m

[
Y

r2
d

dr

(
r2 dR

dr

)
+ R

r2 sin(θ)
∂

∂θ

(
sin(θ)∂Y

∂θ

)
+ R

r2 sin2(θ)
∂2Y

∂ϕ2

]
+ V RY = ERY

Dividing by Y R and multiplying by −2mr2/ℏ2:{
1
R

d

dr

(
r2 dR

dr

)
− 2mr2

ℏ2 [V (r) − E]
}

+ 1
Y

{
1

sin(θ)
∂

∂θ

(
sin(θ)∂Y

∂θ

)
+ 1

sin2(θ)
∂2Y

∂ϕ2

}
= 0

The term in the first curly bracket depends only on r, whereas the remainder depends only on
θ and ϕ, so, as before, each must be a constant. I will call this separation constant ℓ(ℓ+ 1),
for reasons which go way beyond what I am covering here, and which depend on a property
of the particle known as its angular momentum. Therefore:

1
R

d

dr

(
r2dR

dr

)
− 2mr2

ℏ2 [V (r) − E] = ℓ(ℓ+ 1) (6.12)

1
Y

{
1

sin(θ)
∂

∂θ

(
sin(θ)∂Y

∂θ

)
+ 1

sin2(θ)
∂2Y

∂ϕ2

}
= −ℓ(ℓ+ 1) (6.13)

Notice how the second equation (known as the angular equation) does not depend on the
potential, and so must be the same for all spherically symmetric (central) potentials. That
means that, in 3 dimensions, the main problem is solving the first equation (known as the
radial equation).

As the angular equation is the same for all spherically symmetric potentials, and in the
interest of saving time, I will just give you the solution to it (since the main course is the radial
equation anyway). If you are interested in how you solve the angular equation, we approach
it in the exact same way, by using separation of variables and letting:

Y (θ, ϕ) = Θ(θ)Φ(ϕ) (6.14)

We then plug this into the angular equation, rearrange, and solve the two resulting equations,
one of which requires a special function (described below) to be solved. Normalizing the
resultant ’angular wave functions’, this ultimately gives us:

Y m
ℓ (θ, ϕ) =

√√√√(2ℓ+ 1)
4π

(ℓ−m)!
(ℓ+m)! e

imϕ Pm
ℓ (cos(θ)) (6.15)

These beautiful equations are given an equally beautiful name - spherical harmonics. m is
another separation constant, introduced by the second round of separation of variables which
I mentioned above, and Pm

ℓ is known as the associated Legendre function, defined by
(strictly, this is only for m ≥ 0, and for m < 0 a different formula for the associated Legendre
functions needs to be used, but for our purposes this isn’t important, so I will just stick to
this one):

Pm
ℓ (x) ≡ (−1)m

(
1 − x2

)m/2
(
d

dx

)m

Pℓ(x) (6.16)
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and Pℓ(x) is the ℓth Legendre polynomial, defined by the Rodrigues formula:

Pℓ(x) ≡ 1
2ℓℓ!

(
d

dx

)ℓ (
x2 − 1

)ℓ
(6.17)

As mentioned before, ℓ and m both depend on the angular momentum properties of the
particle of interest, so we will just take them to be constants that are given to us. These
constants can only take the following values for the formulae above to make any sense:

ℓ = 0, 1, 2, . . . ; m = −ℓ, −ℓ+ 1, . . . , −1, 0, 1, . . . , ℓ− 1, ℓ (6.18)

Now onto the radial equation. We can significantly simplify the radial equation if we change
variables: Let

u(r) ≡ rR(r) (6.19)
so that R = u/r, dR/dr = [r(du/dr) − u] /r2, (d/dr) [r2(dR/dr)] = rd2u/dr2, and hence:

− ℏ2

2m
d2u

dr2 +
[
V + ℏ2

2m
ℓ(ℓ+ 1)
r2

]
u = Eu (6.20)

Notice how this is identical to the one-dimensional Schrödinger equation (Equation 4.4),
except that the effective potential,

Veff = V + ℏ2

2m
ℓ(ℓ+ 1)
r2 (6.21)

contains an extra piece called the centrifugal term, (ℏ2/2m) [ℓ(ℓ+ 1)/r2]. It is so called
because it tends to throw the particle outward (away from the origin), just like the centrifugal
(pseudo-)force in classical mechanics.

This is as far as we can go until a specific potential V (r) is provided, so it is time to use
all of the tools we have built up until now to finally confront the hydrogen atom.

1.7 The Hydrogen Atom

Enough procrastination - let’s now solve the Schrödinger equation for the electron in the
hydrogen atom. As you know, the hydrogen atom consists of a proton of charge e, and
an electron of charge −e and mass me, with the mass of the proton being roughly 1836×
larger than that of the electron. For that reason, we will treat the proton as being essentially
motionless. From Coulomb’s law, the potential energy of the electron is:

V (r) = − e2

4πϵ0

1
r

(7.1)

and the radial equation (Equation 6.20) becomes:

− ℏ2

2me

d2u

dr2 +
[
− e2

4πϵ0

1
r

+ ℏ2

2me

ℓ(ℓ+ 1)
r2

]
u = Eu (7.2)

The Coulomb potential admits continuum states (with E > 0), describing electron-proton
scattering (I have not explained continuum states here, but they aren’t of interest anyway so
it’s fine), as well as discrete bound states (with E < 0), representing the hydrogen atom -
we will confine our attention to the latter.
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The first thing we should do is tidy up the notation. Let

κ ≡
√

−2meE

ℏ
(7.3)

(Remember that E is negative for bound states, as I mentioned above, so κ is real.) Dividing
Equation 7.2 by E, we have:

1
κ2
d2u

dr2 =
[
1 − mee

2

2πϵ0ℏ2κ

1
(κr) + ℓ(ℓ+ 1)

(κr)2

]
u

Introducing the variables:

ρ ≡ κr and ρ0 ≡ mee
2

2πϵ0ℏ2κ
(7.4)

We obtain:
d2u

dρ2 =
[
1 − ρ0

ρ
+ ℓ(ℓ+ 1)

ρ2

]
u (7.5)

Now here comes a devilishly clever trick to solving differential equations such as these - we
perform a technique called ”stripping off asymptotic behaviour”. In other words, we look at
what form the solution must take when approaching limits such as 0 or infinity, and we ’pull’
those factors out of the solution so that we end up with an equation which we hope is easier
to solve than the original. If you are still a bit confused by what this means, it will become
clear in a moment.

As ρ → ∞, the constant term in the brackets dominates (since the other two go to 0), so
approximately:

d2u

dρ2 = u

The general solution is:
u(ρ) = Ae−ρ +Beρ (7.6)

but eρ blows up (as ρ → ∞), which would make the solution non-normalizable, so B = 0.
Evidently,

u(ρ) ∼ Ae−ρ (7.7)
for large ρ. On the other hand, as ρ → 0 the centrifugal term dominates; approximately then:

d2u

dρ2 = ℓ(ℓ+ 1)
ρ2 u

The general solution is:
u(ρ) = Cρℓ+1 +Dρ−ℓ

but, once again, ρ−ℓ blows up (as ρ → 0), so D = 0. Thus,

u(ρ) ∼ Cρℓ+1 (7.8)

for small ρ.
Now, stripping off the asymptotic behaviour and introducing the new function v(ρ), we

get:
u(ρ) = ρℓ+1e−ρv(ρ) (7.9)

in the hope that v(ρ) will turn out to be simpler than u(ρ). At first, this doesn’t look to be
the case:

du

dρ
= ρℓe−ρ

[
(ℓ+ 1 − ρ)v + ρ

dv

dρ

]
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and
d2u

dρ2 = ρℓe−ρ

{[
−2ℓ− 2 + ρ+ ℓ(ℓ+ 1)

ρ

]
v + 2(ℓ+ 1 − ρ)dv

dρ
+ ρ

d2v

dρ2

}
In terms of v(ρ), then, the radial equation (Equation 7.5) reads:

ρ
d2v

dρ2 + 2(ℓ+ 1 − ρ)dv
dρ

+ [ρ0 − 2(ℓ+ 1)]v = 0 (7.10)

To finish off, we employ another method for solving differential equations called the power
series method. To do this, we assume that the solution, v(ρ), can be expressed as a power
series in ρ:

v(ρ) =
∞∑

j=0
cjρ

j (7.11)

The problem that we need to solve is to determine the coefficients (c0, c1, c2, . . .). Differen-
tiating term by term:

dv

dρ
=

∞∑
j=0

jcjρ
j−1 =

∞∑
j=0

(j + 1)cj+1ρ
j

(In the second summation I have renamed the ”dummy index”: j → j + 1. Check that this
indeed doesn’t change the value of the summation.) Differentiating again:

d2v

dρ2 =
∞∑

j=0
j(j + 1)cj+1ρ

j−1

Inserting these back into Equation 7.10:
∞∑

j=0
j(j + 1)cj+1ρ

j + 2(ℓ+ 1)
∞∑

j=0
(j + 1)cj+1ρ

j

− 2
∞∑

j=0
jcjρ

j + [ρ0 − 2(ℓ+ 1)]
∞∑

j=0
cjρ

j = 0

This equation can only be true if the coefficient of each power of ρ vanishes, so, exploiting
the linearity of the summation operator, and equating the coefficients of like powers yields:

j(j + 1)cj+1 + 2(ℓ+ 1)(j + 1)cj+1 − 2jcj + [ρ0 − 2(ℓ+ 1)]cj = 0

or:
cj+1 =

{
2(j + ℓ+ 1) − ρ0

(j + 1)(j + 2ℓ+ 2)

}
cj (7.12)

This recursion formula determines the coefficients, and hence the function v(ρ), which in
turn determines the function u(ρ), which in turn determines the function u(r), which in turn
determines the function R(r), which, when combined with the spherical harmonics Y m

ℓ (θ, ϕ),
determines the function ψ(r, θ, ϕ), which in turn determines the function Ψ(r, θ, ϕ, t) - quite
a journey! It is quite easy to lose sight of the end goal when solving difficult differential
equations such as these, so it is good to keep reminding yourselves by asking the question -
what am I actually trying to find? Let us proceed.

To determine these coefficients, we start with c0, and the above equation gives us c1. We
then use c1 to find c2, and so on. Let us examine what the coefficients look like for large j
(which corresponds to large ρ, where the higher powers dominate). In this case the recursion
formula says:

cj+1 ≈ 2j
j(j + 1)cj = 2

j + 1cj
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(The +1 in the denominator makes no difference apart from making the following argument
a little cleaner, so I have decided to keep it, despite dropping the other constant terms. You
are welcome to try and do it without the +1 if you are not convinced). So:

cj ≈ 2j

j! c0 (7.13)

Suppose for a moment that this were the exact result. Then:

v(ρ) = c0

∞∑
j=0

2j

j! ρ
j = c0e

2ρ

(The second formula comes from the Taylor series expansion of ex). Hence,

u(ρ) = c0ρ
ℓ+1eρ (7.14)

which blows up at large ρ. This is precisely the asymptotic behaviour we didn’t want, in
Equation 7.6. The only escape from this dilemma is this: The series must terminate. There
must occur some integer N such that:

cN−1 ̸= 0 but cN = 0 (7.15)

(Beyond this all coefficients vanish automatically, from the recursion formula above, and so
all large powers of ρ vanish, preventing a non-normalizable solution). In that case Equation
7.12 states that:

2(N + ℓ) − ρ0 = 0
As N and ℓ are both constants, we can define a new constant, n, for simplicity:

n ≡ N + ℓ (7.16)

This gives us:
ρ0 = 2n (7.17)

But ρ0 determines E, from Equations 7.3 and 7.4, so:

E = −ℏ2κ2

2me

= − mee
4

8π2ϵ2
0ℏ2ρ2

0
(7.18)

so the allowed energies (Figure 7.1) are:

En = −

me

2ℏ2

(
e2

4πϵ0

)2
 1
n2 = E1

n2 , n = 1, 2, 3, . . . (7.19)

This is the famous Bohr formula, regarded as ”the most important result in all of quantum
mechanics, by any measure.” What just happened?! It seemed like we weren’t anywhere close
to finishing, yet we suddenly obtained this result! I told you that being patient was worth it -
we are nearing the end now.
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Figure 7.1: The ground state and excited state energies of the electron in hydrogen for increasing values
of n (Equation 7.19).

Combining Equations 7.4 and 7.17, we find that:

κ =
(
mee

2

4πϵ0ℏ2

)
1
n

= 1
an

(7.20)

where

a ≡ 4πϵ0ℏ2

mee2 = 0.529 × 10−10 m (7.21)

is the so-called Bohr radius. It follows, from Equation 7.4 again, that:

ρ = r

an
(7.22)

The spatial wavefunctions for the electron in the hydrogen atom are therefore labelled by three
quantum numbers (n, ℓ, and m, where n is called the principal quantum number and
tells you the energy of the electron, from Equation 7.19, ℓ is called the azimuthal quantum
number and m is called the magnetic quantum number. As mentioned before, ℓ and m
are related to the angular momentum of the electron):

ψnℓm(r, θ, ϕ) = Rnℓ(r)Y m
ℓ (θ, ϕ) (7.23)

where (from Equations 6.19 and 7.9):

Rnℓ(r) = 1
r
ρℓ+1e−ρv(ρ) (7.24)

where v(ρ) is a polynomial of degree n− ℓ− 1 in ρ, whose coefficients are determined (up to
an overall normalization factor) by the recursion formula from before:

cj+1 = 2(j + ℓ+ 1 − n)
(j + 1)(j + 2ℓ+ 2)cj (7.25)

The polynomial v(ρ), defined by this recursion formula, is a function well known to applied
mathematicians; apart from the normalization, it can be written as:

v(ρ) = L2ℓ+1
n−ℓ−1(2ρ) (7.26)
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where

Lp
q(x) ≡ (−1)p

(
d

dx

)p

Lp+q(x) (7.27)

is known as the associated Laguerre polynomial, and

Lq(x) ≡ ex

q!

(
d

dx

)q

(e−xxq) (7.28)

is the qth Laguerre polynomial. Therefore, the complete radial equation for the electron in
the hydrogen atom (apart from the normalization constant out front) is:

Rnℓ(r) = 1
r

(
r

na

)ℓ+1
e−r/na L2ℓ+1

n−ℓ−1

( 2r
na

)
(7.29)

Now, the moment you’ve all been waiting for - upon combining this radial equation with the
spherical harmonic equation and normalizing appropriately (the normalization is not something
I encourage you to try, but if you’d like to suffer a bit please by all means go ahead) we finally
obtain the normalized hydrogen wavefunctions:

ψnℓm(r, θ, ϕ) =
√( 2

na

)3 (n− ℓ− 1)!
2n(n+ ℓ)! e−r/na

( 2r
na

)ℓ [
L2ℓ+1

n−ℓ−1

( 2r
na

)]
Y m

ℓ (θ, ϕ) (7.30)

They may not look pretty, but don’t complain - as I mentioned before, this is one of the very
few realistic systems that can be solved at all, in exact closed form. The fact that we have
managed to find exact solutions to this problem is an incredible feat in itself!

To find the time-dependent wavefunction, we apply the exact same procedure that we have
until now, and since usually the spacial wavefunctions are the main point of interest, as we
want to visualise what the wavefunctions look like in space, I will not bother with the time-
dependent general solution (you can have a go at it yourself if you want to). To give you some
idea of what the wavefunctions look like, let me show you the ground state wavefunction,
which corresponds to n = 1 and ℓ = m = 0, and is the state the electron in hydrogen is
usually found in (and is also the simplest one, of course). Substituting the relevant values of
n, ℓ, and m:

ψ100(r, θ, ϕ) = 1√
πa3

e−r/a (7.31)

Much nicer to look at, wouldn’t you agree? The corresponding energy level of the electron,
which also happens to be the binding energy (energy required to ionise the atom in its
ground state) of hydrogen, is:

E1 = −

me

2ℏ2

(
e2

4πϵ0

)2
 = −13.6 eV (7.32)

There we go - we have built our way up from the very basics and have managed to obtain
the most important result in quantum mechanics, and now possess the ability to explain
phenomena such as the blackbody emission and absorption spectra, atomic orbitals,
the shapes of electron clouds in atoms, and much more!

I hope that on this journey you have gained at least some appreciation for the elegance
of quantum theory, along with an appreciation of just how incredible physicists are, to have
been able to come up with such a theory and reach this same conclusion a century ago!
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2 Canonically quantizing a single mode of radiation

Written by Philip, Year 12

2.1 Introduction

Initially looking at this title, one may think to themselves, ”what is canonical quantization”?
Simply put, this is the procedure in which we convert a classical system into a quantum system.
But why do we need this, you might ask? With classical and semi-classical quantizations, we
can describe most phenomena within optics, such as interference, or diffraction. However,
this fails to describe the process of spontaneous emission, in which an atom eventually emits
a photon, when in an excited state, or squeezed states of light (I will not get into this now,
though feel free to research this, perhaps as an exercise for the reader). In this article, I will
present to you the general form of canonical quantization, and then show the application of
it to the most basic mode of light, a simple, plane-polarised, propogating wave. Before we
begin, I would like to introduce two things, a notation many of you are likely unfamiliar with,
known as Dirac notation, and also what we call states of a quantum system.

2.1.1 Dirac Notation

This is a notation that allows us to demonstrate vectors and their complex conjugates, and
what is known as an adjoint. It is also known as bra-ket notation, bra and ket being the actual
brackets that surround our vectors.
The general form of a simple column vector is shown with the ket brackets surrounding it, as
follows:

φ =


x1
x2
...
xn

 = |φ⟩ (1)

The bra notation is used for the hermitian adjoint of φ - a combination of its complex conjugate
and conjugate transpose. We denote a complex conjugate as φ, that if there is some element
which is a complex number in the vector, say a + bi, its complex conjugate is a − bi. The
conjugate transpose for a column vector, is converting it into a row vector:

φT =
[
x1 x2 · · · xn

]
= ⟨φ| (2)

Using this notation, we can show the inner product (another term for the more commonly
known dot product), as ⟨φ|φ⟩, producing a scalar, but also the outer product:

|ϕ⟩ =
[
ϕ1
ϕ2

]
(3)

⟨ψ| =
[
ψ1 ψ2

]
(4)

|ϕ⟩ ⟨ψ| =
[
ϕ1ψ1 ϕ1ψ2
ϕ2ψ1 ϕ2ψ2

]
(5)

The outer product is generally used in accompany with tensors, for combining sub-vector
spaces, however I will not get into that now, though we will see an application of it soon.

20



2.1.2 States

States of a quantum system are sort of an expression for its behaviour. One example is its
polarisation - we can describe the state of a photon by what axis it is polarised in. To show
this, we use the Dirac notation |ψ⟩ to represent a state of wavefunction ψ:

|ψ⟩ = |H⟩ (6)

This example is where our photon ψ is polarised in the horizontal direction H. In this basis,
known as the canonical basis, we label the vertical direction V . You can think of it as your
i and j vectors, if you wish, the canonical basis being the simple x,y coordinate basis. Of
course, there are different basis, where the coordinate system is transformed, think of it how
the x,y, plane changes when you transform sets of points by a matrix, such as a matrix that
rotates it by 180◦. But this is not all there is to it. In quantum systems, we can have our
photon in a superposition of polarisations, such that when we measure it in the canonical
basis, there is a chance that we measure it to be in state |H⟩ or in state |V ⟩:

|ϕ⟩ = 1√
2

(|H⟩ + |V ⟩) (7)

Notice the 1√
2 at the beginning. This is here since we always keep our states to be normalised,

of magnitude 1 (you can check this with normal Pythagoras). This keeps our magnitudes
always the same within basis, and also makes our calculations a lot easier, as it means that
⟨φ|φ⟩ = 1, for example. Armed with this knowledge, I will now take you through the rather
long journey of canonically quantising a single mode of light.

2.2 Canonical Quantization

We can define canonical quantization as taking some classical Hamiltonian conjugate variables
(pairs of variables, that help us to express the energy – the Hamiltonian – of a classical system),
say qj and pj, denoting a coordinate in space and momentum respectively, and then transform
them into q̂j and p̂j, such that:

[q̂j, p̂j] = iℏ (8)
Where:

[A,B] = AB − BA (9)
For some A,B.

We use ℏ, the Reduced Planck constant, i.e. ℏ = h
2π

.We can do this more generally with any
Classical Matrix, quantizing it into a Quantum Matrix, that contains pairs of these canonically
conjugate variables. We find that if variables are not of the same pair, (e.g. some qi and
some pj, where i ̸= j), we define them as being commutative, and so their commutator is 0.
Hence we find:

A = (q1, ...qj, ...; p1, ...pj, ...) ⇒ Â = (q̂1, ...q̂j, ...; p̂1, ...p̂j, ...) (10)

Where:
[q̂i, p̂j] = iℏδij (11)

Note that we use the Kronecker delta symbol δij, which shows that when i ̸= j, they com-
mute (i.e. their commutator is 0), and when i = j, the two canonically conjugate variables
commute, having a commutator of iℏ.
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Figure 2: Potential Energy of a particle (U(x)) against it’s position (x)

2.3 Finding pairs of Canonically Conjugate Variables

However, one may ask how we can actually find and recognize these pairs of canonically con-
jugate variables? Well, we go through a procedure of applying it to the classical Hamiltonian
equations, which are equations based on the classical Hamiltonian expression of energy - we
define the Hamiltonian of a system (H), to equal the potential energy, summed with the
kinetic energy (H = U(x) + p2

2m
). We also define the Hamiltonian, as having an eigenvalue

of E - energy (E being some scalar), essentially that H |ψ⟩ = E |ψ⟩.These allow us to find a
link between these pairs of variables, and the evolution of them as a system progresses (e.g.
momentum progressing with space). First, we are presented with the Hamiltonian equations
below, linking the evolution of both variables.

q̇ = ∂H

∂p

ṗ = −∂H

∂q

(12)

In order to see their mechanics, let us take an example. This is a material particle of mass
m, evolving in a potential U(x), where we define q = x and p = mdx

dt
. And Thus we outlay

the equations:

dx
dt = p

m
∂H

∂p
= p

m

(13)

And so as these yield the same result, so far we view them as canonically conjugate variables
(since for this to be true, we require dx

dt
= ∂H

∂p
). Now we must check this to be true by

applying it similarly to the derivative of momentum:

dp
dt = −∂U

∂x

−∂H

∂q
= −∂U

∂x

(14)

Hence, we confirm our first pair of canonically conjugate variables.
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2.3.1 A short detour to Schödinger’s equation

Now, we canonically quantise this pair of variables in x̂ and p̂, getting the Quantum Hamil-
tonian, such that:

Ĥ = U(x̂) + p̂2

2m (15)

Where:
[x̂, p̂] = iℏ (16)

And we define:
p̂ = ℏ

i

∂

∂x
(17)

I will now present to you how we use this in order to derive a version of Schödinger’s famed
wave equation. Initially, consider a classical EM plane-polarised wave that propogates along
the space r, with an angular frequency ω, the phase of the electric field being φ (distributed
into φH and φV for the horizontal and vertical components of the field, respectively), and a
wavenumber k = ω

c
, where c is the speed of light. Do not worry if you don’t recognise this,

it is just simply another quantity that we consider for the wave. We know that the EM wave
is transverse, so we define its electric field as follows:

E(r, t) = AH î cos(kr − ωt+ ϕH) + AV ĵ cos(kr − ωt+ φV ) (18)
Where AH and AV are the horizontal and vertical components of the real amplitude, respec-
tively, and î and ĵ being the unit vectors of the x-y plane we all know about. Putting this
into complex form, knowing our identity of cos(θ) = eiθ+e−iθ

2 , and eiθ = cos(θ) + i sin(θ), we
find:

E(r, t) = Re[AHe
iφH î+ Ave

iφV ĵ)eikr−iωt] (19)
Remember that we take the real part of the complex form, for we only care about expressing
the real part of the field for now. We can now proceed to use this to define the state |ψ⟩ of
the electric field (note that it doesn’t care about where the field is in space, just its ’state’),
and now we use the normalised states |H⟩ and |V ⟩ instead of our î and ĵ vectors respectively
, to stick with our Dirac notation. We make the state |ψ⟩ normalised, having a magnitude of
1, since this will make our calculations much easier:

|ψ⟩ = 1√
A2

H + A2
V

(
AHe

iϕH |H⟩ + AV e
iϕV |V ⟩

)
e−iωt (20)

From this, by inspection we see that we can define the state |ψ(t)⟩ at a time t as a function
of its initial state, |ψ(0)⟩:

|ψ(t)⟩ = |ψ(0)⟩ e−iωt (21)
We know of the equation showing the energy of a photon, E = hf . We can rearrange this
as follows:

E = hf

= h
1
T

= h

2π
2π
T

= ℏω

(22)

Where T is the time period, the time it takes to complete one oscillation, 1
f
. And so we can

substitute this into our equation, eliminating ω:

|ψ(t)⟩ = |ψ(0)⟩ e− i
ℏEt (23)
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In Quantum Mechanics, we define the Quantum Hamiltonian as such:

Ĥ =


E1 0 · · · 0
0 E2 0
... . . . ...
0 0 · · · Em


=
∑

j

Ej |Ej⟩ ⟨Ej|

(24)

Where m is some positive integer. We use Ĥ rather than H, since we now are describing the
quantum states of the electric field, not its classical description anymore. We must add the
scalar Ej at the front, since we take all states to be normalised (in this case, |Ej⟩). From
this, we are able to get a complete orthonormal basis to work in, and so we can describe any
quantum state as a linear combination/superposition of these eigenstates |Ej⟩. And so we
define the initial state |ψ(0)⟩ as follows:

|ψ(0)⟩ =
∑

j

ψj |Ej⟩ (25)

ψj being a scalar coefficient of each eigenstate that makes up our initial state (how ’much’
each energy eigenstate makes up the state). Hence, we can define the state |ψ(t)⟩ at a time
t as shown:

|ψ(t)⟩ =
∑

j

ψj |Ej⟩ e− i
ℏEjt (26)

Due to the nature of a diagonalised matrix, we can define Ĥn as such:

Ĥn =


E1 0 · · · 0
0 E2 0
... . . . ...
0 0 · · · Em


n

=


En

1 0 · · · 0
0 En

2 0
... . . . ...
0 0 · · · En

m

 (27)

Using the Taylor expansion for ex (if you haven’t met this before, it is a way of approximating
functions in terms of polynomials), we find that:

ex = 1 + x+ x2

2 + x3

6 + ... =
∞∑

n=0

xn

n! (28)

∴ e− i
ℏEjt = 1 + − i

ℏ
Ejt+

(− i
ℏEjt)2

2 +
(− i

ℏEjt)3

6 + ...

=
∞∑

n=0

(− i
ℏEjt)n

n! =
∞∑

n=0

(− i
ℏt)

n

n! En
j

(29)

And so we proceed as follows:

|ψ(t)⟩ =
∑

j

ψj |Ej⟩ e− i
ℏEjt

=
∑

j

ψj |Ej⟩
∞∑

n=0

(− i
ℏt)

n

n! En
j

=
∑

j

∞∑
n=0

ψj

(− i
ℏt)

n

n! En
j |Ej⟩

(30)
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Since:
Ĥn |Ej⟩ =

∑
j

En
j |Ej⟩ (31)

We find:

|ψ(t)⟩ =
∑

j

∞∑
n=0

ψj

(− i
ℏt)

n

n! Ĥn |Ej⟩

=
∑

j

∞∑
n=0

(− i
ℏĤt)

n

n! ψj |Ej⟩

= e− i
ℏ Ĥt |ψ(0)⟩

(32)

Now, we have successfully found a relation between the state |ψ⟩ at any particular time, in
terms of the initial state, a constant. This allows us to therefore find the relation between
the rate of change of the state at a time t and the initial state:

∂

∂t
|ψ(t)⟩ = −iĤ

ℏ
e− i

ℏ Ĥt |ψ(0)⟩

∂

∂t
|ψ(t)⟩ = −iĤ

ℏ
|ψ(t)⟩

(33)

Since we take the partial derivative of time, we generalise it to a state |ψ⟩:

∂

∂t
|ψ⟩ = −iĤ

ℏ
|ψ⟩

iℏ
∂

∂t
|ψ⟩ = Ĥ |ψ⟩

(34)

And so we have arrived at Schödinger’s wave equation, relating the Quantum Hamiltonian of
a state to its rate of change. We can further substitute our known expression for the Quantum
Hamiltonian, getting:

iℏ
∂

∂t
|ψ⟩ =

(
U(x̂) + p̂2

2m

)
|ψ⟩

iℏ
∂

∂t
|ψ⟩ =

(
U(x̂) +

(ℏ
i

∂
∂x

)2

2m

)
|ψ⟩

iℏ
∂

∂t
|ψ⟩ =

(
U(x̂) − ℏ2

2m
∂2

∂x2

)
|ψ⟩

(35)

And so we find this form of Schrödinger’s wave equation. You have already seen two
applications of it within the previous section of the article, but you are free to search for more
if you’d like. Fascinating, isn’t it!

2.4 Material Harmonic Oscillators

Now, we will see how quantised radiation can be described by a set of quantised harmonic
oscillators. To do this, we will solve the Schrödinger equation associated to this classical sys-
tem, which will then be quantized. For our solution, we will use Dirac’s method of formalism,
which can be applied to any vibrating system that can be modelled as a harmonic oscillator,
such as the electromagnetic field.
First, we define a system of particle mass m, which moves along the x axis, attracted towards
the origin by a force proportional to its distance, that is defined as F = −

√
mωx, such as
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Figure 3: U(x) of a material particle in a harmonic oscillator against its space

the equation of elastic force for F = −kx that I’m sure you’re all aware of. From this, we
can derive the following equations depicting the potential and Hamiltonian of the system.

Ĥ = 1
2mω

2x̂2 + p̂2

2m (36)

Ĥ |ϕ⟩ = E |ϕ⟩ (37)
We look for a solution to this equation, where |ϕ⟩ is simply a vector within the space, describing
the state of the system. The first step of Dirac’s method to proceed solving this, is to introduce
two new dimensionless operators, X̂ and P̂ , such that:

X̂ =
√
mω

ℏ
x̂

P̂ =
√

1
mωℏ

p̂

(38)

By a simple calculation, we find that:

[X̂, P̂ ] = i

Ĥ =ℏω
2 (X̂2 + P̂ 2)

(39)

We introduce two further operators, the annihilation operator â, and its Hermitian conjugate
(essentially its complex conjugate â, followed by its conjugate transpose, âT , making âT ), the
creation operator â†, where:

â = 1√
2

(X̂ + iP̂ )

â† = 1√
2

(X̂ − iP̂ )
(40)
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Following from this, we find:
[â, â†] = ââ† − â†â

= 1
2((X̂ + iP̂ )(X̂ − iP̂ ) − (X̂ − iP̂ )(X̂ + iP̂ ))

= 1
2((X̂X̂ − iX̂P̂ + iP̂ X̂ + P̂ P̂ ) − (X̂X̂ + iX̂P̂ − iP̂ X̂ + P̂ P̂ ))

= i(P̂ X̂ − X̂P̂ )

(41)

Since we know that [X̂, P̂ ] = X̂P̂ − P̂ X̂ = i, we can deduce:

[â, â†] = i(P̂ X̂ − X̂P̂ ) = 1 (42)

Moreover, we can express P̂ and X̂ as functions of â and â†, easily done using simultaneous
equations or the inner product:

X̂ = 1√
2

(â+ â†)

P̂ = −i√
2

(â− â†)
(43)

Using this, we find a new expression of the Quantum Hamiltonian, as a function of the
annihilation and creation operators:

Ĥ = ℏω
2 (X̂2 + P̂ 2)

= ℏω
4 ((â†â† + â†â+ ââ† + ââ) − (â†â† − â†â− ââ† + ââ))

= ℏω
2 (â†â+ ââ†)

= ℏω
(
â†â+ 1

2

)
(44)

And now we have successfully described the Quantum Hamiltonian as a function of the creation
and annihilation operators. If you are unsure where the final step came from, I would suggest
looking over the commutator of â† and â. I would also like you to take note of the ordering of
the operators â and â†, the latter coming first. This is known as normal ordering. Although
its use is not particularly apparent at this stage, if you choose to further research this topic
of Quantum Optics, this knowledge may prove useful to you later on.

2.5 Number States and Heisenberg’s Uncertainty Limit

We now have more weapons in our arsenal to help us solve the equation Ĥ |ϕ⟩ = E |ϕ⟩. What
I will also introduce now, are known as Number States of a mode of radiation, also known
as Fock States. Dirac reasoned that using these, we can solve the slightly simpler equation
below, which can then lead us to the answer of the original equation. I cannot however
mention this without showing the derivation of Heisenberg’s Uncertainty Limit for our case of
momentum and space, for it will help with understanding how there are always fluctuations,
even in a vacuum.

By simple calculation, we see that:

[Ĥ, â] = −ℏωâ

[Ĥ, â†] = ℏωâ†
(45)
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We take that Ĥ |ϕ⟩ = E |ϕ⟩ for some scalar E. Letting |ϕ′⟩ = â |ϕ⟩, we find that:

Ĥ |ϕ′⟩ = Ĥâ |ϕ⟩
= (âĤ − ℏωâ) |ϕ⟩
= (Eâ− ℏωâ) |ϕ⟩
= (E − ℏω) |ϕ′⟩

(46)

Similarly, taking |ϕ′′⟩ = â† |ϕ⟩, we show:

Ĥ |ϕ′′⟩ = Ĥâ† |ϕ⟩
= (â†Ĥ + ℏωâ) |ϕ⟩
= (Eâ† + ℏωâ) |ϕ⟩
= (E + ℏω) |ϕ′′⟩

(47)

And so we see the creation and annihilation effects, of these creation and annihilation oper-
ators. We know that the energy of a photon can be defined as ℏω. This is derived from the
more familiar expression hf most of you have learnt, as hf = h

2π
2fπ = h

2π
2π
T

= ℏω, ω being
its angular velocity. From these equations, we notice that when the annihilation operator is
applied to a state |ϕ⟩ with a well defined energy E, the final energy is equal to E − ℏω,
the previous energy, but now subtracting one photon from the system. Similarly, there is a
complementary effect for the creation operator â†. Therefore we find that there must be a
state |0⟩, where when â is applied, it returns a result of null, there is no longer anything within
the system, and this is what is known as the ground state.

Just as in statistics, we describe the variance as the root mean square - arithmetic mean
inequality, such that:

σ2
x =

n∑
i

(xi − x)2

n
(48)

(In this sole equation, x represents the mean, not the conjugate, to clear up any confusion).
We can do just the same with an observable, V̂ , in which we find the variance in what we
could measure from it:

⟨∆V̂ 2⟩ = ⟨ψ| (V̂ − ⟨V̂ ⟩)2 |ψ⟩
= ⟨ψ| V̂ 2 − 2V̂ ⟨V̂ ⟩ + ⟨V̂ ⟩2 |ψ⟩
= ⟨V̂ 2⟩ − 2⟨V̂ ⟩⟨V̂ ⟩ + ⟨V̂ ⟩2

= ⟨V̂ 2⟩ − 2⟨V̂ ⟩2 + ⟨V̂ ⟩2

= ⟨V̂ 2⟩ − ⟨V̂ ⟩2

(49)

We now define a new relation, between operators A and B, where:

{A,B } = AB +BA (50)

We will proceed to prove a very useful inequality, and then use that to determine Heisenberg’s
uncertainty principle for our case of momentum and space operators p̂ and x̂. For two
operators, A and B, and where Im {x } ,Re {x } denote the imaginary and real parts of some
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complex number x respectively we find:

|⟨AB⟩|2 = ⟨AB⟩⟨AB⟩
= Re { ⟨AB⟩ }2 + Im { ⟨AB⟩ }2

= 1
4((2Re { ⟨AB⟩ })2 + (2Im { ⟨AB⟩ })2)

= 1
4((⟨AB⟩ + ⟨AB⟩)2 + (⟨AB⟩ − ⟨AB⟩)2)

= 1
4((⟨AB⟩ + ⟨BA⟩)2 + (⟨AB⟩ − ⟨BA⟩)2)

= 1
4(|⟨{A,B }⟩|2 + |⟨[A,B]⟩|2)

∴ |⟨AB⟩|2 ≥ 1
4 |⟨[A,B]⟩|2

(51)

Equality is achieved when AB = −BA, so when two operators are anti-commutative.
The Cauchy-Schwarz Inequality states that:

|⟨a|b⟩|2 ≥ |a|2|b|2 (52)

This can be easily be proved when thinking of the dot product as a · b = |a||b| cos θ, and
so equality is proved when θ = 0. Using this, we can prove that the expected values of 2
operators squared multiplied together is greater than or equal the square of the expected value
of them multiplied, as follows:

⟨Â2⟩⟨B̂2⟩ ≥ |⟨ÂB̂⟩|2 (53)

Letting |x⟩ = Â |ψ⟩ and |y⟩ = B̂ |ψ⟩, we find:

⟨x̂|x̂⟩ ⟨ŷ|ŷ⟩ ≥ ⟨x̂| ŷ⟩ (54)

Which we see follows the Cauchy-Schwarz Inequality. In the case where ⟨Â⟩ = ⟨B̂⟩ = 0,
using our newly derived relations, we hence find that:

⟨∆Â2⟩⟨∆B̂2⟩ = ⟨Â2⟩⟨B̂2⟩ ≥ |⟨AB⟩|2 ≥ 1
4 |⟨[A,B]⟩|2

⟨∆Â2⟩⟨∆B̂2⟩ ≥ 1
4 |⟨[A,B]⟩|2

(55)

Thus proving Heisenberg’s Uncertainty. We will now show this for the case of our space and
momentum operators. Since:

x̂ =
√
ℏ√

2mω
(â+ â†)

p̂ = −i
√
mωℏ√

2
(â− â†)

(56)
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Using this, we find the expectation values of our two variables when in the ground state:

⟨x̂⟩ =
√
ℏ√

2mω
⟨0| (â+ â†) |0⟩

=
√
ℏ√

2mω
(⟨0| â |0⟩ + ⟨0| â† |0⟩)

=
√
ℏ√

2mω
(⟨0| â |0⟩ + â |0⟩ |0⟩)

=
√
ℏ√

2mω
(0 ⟨0| + 0 ⟨0|)

= 0

⟨p̂⟩ = −i
√
mωℏ√

2
⟨0| (â− â†) |0⟩

= −i
√
mωℏ√

2
(⟨0| â |0⟩ − ⟨0| â† |0⟩)

= −i
√
mωℏ√

2
(⟨0| â |0⟩ − â |0⟩ |0⟩)

= −i
√
mωℏ√

2
(0 ⟨0| − 0 ⟨0|)

= 0

(57)

And so we see their expected value is 0. Therefore, we can apply it to our Heisenberg
uncertainty inequality, finding:

∆x̂2∆p̂2 ≥ 1
4 |⟨[x, p]⟩|2

∆x̂2∆p̂2 ≥ 1
4 |iℏ|2

∆x̂2∆p̂2 ≥ 1
4ℏ

2

∆x̂∆p̂ ≥ ℏ
2

(58)

This tells us that even in the ground state, for the case of light a vacuum, there are quantum
fluctuations, leading to a energy state that is greater than 0. In this case, it is ℏω

2 . Therefore,
we can express the Hamiltonian of a state |n⟩, applying it to the state, as:

Ĥ |n⟩ = ℏω
(
n+ 1

2

)
|n⟩ (59)

Solving our desired equation, and where n ∈ N ∪ {0}. One can also show this, using our
equation of the Hamiltonian in terms of â†, â and applying it to the state |0⟩. I will show you
something further now: how we can construct any state of light, which contains n photons,
using our creation and annihilation operators:
We are aware of the expression Ĥ = ℏω

(
â†â+ 1

2

)
, and so can rearrange it to: 1

ℏω
Ĥ− 1

2 = â†â.
We will now proceed to solve the equation:

â |n⟩ = α |n− 1⟩ (60)
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Where α is some unknown constant to be solved for.
â |n⟩ = α |n− 1⟩

|â |n⟩ |2 = ⟨n| â†â |n⟩ = |α|2 ⟨n− 1|n− 1⟩ = |α|2

1
ℏω

⟨n| Ĥ |n⟩ − 1
2 ⟨n|n⟩ = |α|2

⟨n| (n+ 1
2) |n⟩ − 1

2 ⟨n|n⟩ = |α|2

n ⟨n|n⟩ = |α|2

n = |α|2

α =
√
n

(61)

We are able to perform a similar equation, using the creation operator, to find that â† |n⟩ =√
n+ 1 |n⟩. Indeed, these show us that using the two operators, we are able to generate any

state of n photons from just the ground state.

2.6 A Single Mode of Radiation

We are all aware of the electromagnetic fields that are everywhere in our day-to-day life. I will
now introduce Maxwell’s equations, which are those that govern the behaviour of the fields,
and then we will go through the classical calculations to obtain the dynamics of our known
field, which will then be quantized to receive our final expression of the Quantum Hamiltonian
in this mode of light. Below are the simplest form of Maxwell’s equations, without source
terms of charges or currents.

∇ · E(r, t) = 0
∇ · B(r, t) = 0

∇ × E(r, t) = −∂B
∂t

∇ × B(r, t) = 1
c2
∂E
∂t

(62)

Where r represents the vector in space of a point in the field, and ∇ = ∂
∂x

ex + ∂
∂y

ey + ∂
∂z

ez,
e denoting the orthonormal basis vectors of our space.
To define a field in a volume that we are interested in, in this case our quantization volume,
one only needs to know the values at the boundary of said volume, which these equations
will help us with. The most elementary solution of Maxwell’s equations is what is known as
a mode; simply a field that oscillates at a well defined frequency. Due to the oscillation, we
can now proceed to quantize it as a harmonic oscillator.

We find that one solution of this set of equations is as of the following, provided that it
follows a few rules:

E(r, t) = ϵlEl(t)ei(kl·r) + c.c. (63)
You may recall seeing a similar equation to this earlier on within the article, when we derived
Schrödinger Wave equation, and that it was slightly different. Do not worry, we are sim-
ply expressing virtually the same equation, but with some different coefficients for ease and
the different conditions (such as no sources). Perhaps you can take the fulfilment of these
conditions as a further proof towards Schrödinger’s equation working, if you’d like. The first
condition that must be met, for this to be a functioning equation is that the unit vector ϵl,
denoting the direction, or polarisation of the electric field, must be perpendicular to kl, the
vector defining the direction of propagation. This is needed to confirm that the divergence,
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Figure 4: An EM Field obeying Maxwell’s Equations

∇ · E, of the electric field is null (none of the field is ’flowing in or out’ of our quantization
volume, as there are no sources).
The second condition is that the amplitude of the field, El(t), oscillates at a well-defined
angular frequency of ωl (El(t) = El(0)e−iωlt, where ωl = c||kl|| = ckl.
We define this mode l of polarisation ϵl and direction of propagation kl as a ’polarised plane
travelling monochromatic wave’. However, this alone is not enough to entirely determine the
mode, it only describes its structure. We must also know our complex amplitude, El, which
characterizes the state of the field in this mode. This is affected by two real variables, such as
its real and imaginary parts, or its modulus/magnitude and phase. Take instance an example
of the pendulum. To fully know its behaviour, one must know the amplitude and phase of its
oscillation, akin to the modulus and phase of this mode l. We will now proceed to confirm that
this equation works within well within the conditions, and retreive a set of dynamic variables
to use in order to describe the system.

2.7 Canonically Conjugate Dynamic Variables of the Field

To begin finding this pair of dynamic variables, we present ourselves with one of Maxwell’s
equations again.

∇ · E(r, t) = 0
E(r, t) = ϵlEl(t)ei(kl·r) + c.c.

(64)

We know that when applying ∇ to our electric field equation, we find that it results in the di-
rection of propagation, as it has the effect of taking a derivative: ∇E(r, t) = iklϵlEl(t)ei(kl·r)+
c.c.. And so we get

∇ · E(r, t) = ikl · ϵlEl(t)ei(kl·r) + c.c. = 0 (65)
Hence kl · ϵl = 0, so kl must be perpendicular to ϵl. Using the third Maxwell equation, we
find that:

∇ × E(r, t) = ikl × ϵlEl(t)ei(kl·r) + c.c. = −∂B
∂t

(66)

Therefore, as a rate of change of the magnetic field, ∂B
∂t

, is in the direction of the cross product
of kl and ϵl, we find that the magnetic field, electric field, and direction of propagation are
three perpendicular vectors, forming a right-handed set. Using the fourth Maxwell equation,
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we obtain the following description of our magnetic field:

∇ × B(r, t) = 1
c2
∂E
∂t

∇ × (∇ × B(r, t)) = ∇ × ( 1
c2
∂E
∂t

)
(67)

The Vector Triple Product Identity states that: A × (B × C) = (A · C)B − (A · B)C.
We can use this to our advantage in solving for the magnetic field; in this case, since ∇ and
B(r, t) are orthogonal, we get that ∇ × (∇ × B(r, t)) = i2(kl × (kl × B(r, t))) = |kl|2B(r, t).
Substituting this in, we get:

∇ × (∇ × B(r, t)) = ∇ × ( 1
c2
∂E
∂t

)

− kl × (kl × B(r, t)) = ikl × ( 1
c2
∂E
∂t

)

|kl|2B(r, t) = ikl × ( 1
c2
∂E
∂t

)

B(r, t) = i

|kl|2
kl × ( 1

c2
∂E
∂t

)

B(r, t) = i

c2k2
l

kl × ϵl
dEl(t)

dt ei(kl·r) + c.c.

B(r, t) = i

ω2
l

kl × ϵl
dEl(t)

dt ei(kl·r) + c.c.

(68)

And we see that it has the same form with the same complex exponential, ei(kl·r), as the
electric field. Taking the derivative with respect to time of this equation, combined with the
third Maxwell equation, we find a second order differential equation:

∇ × E(r, t) = −∂B
∂t

= − i

ω2
l

kl × ϵl
d2El(t)

dt2 ei(kl·r) + c.c.

ikl × ϵlEl(t)ei(kl·r) + c.c. = − 1
ω2

l

ikl × ϵl
d2El(t)

dt2 ei(kl·r) + c.c.

−ω2
l El(t) = d2El(t)

dt2

(69)

Since this equation is linear (as El is proportional to this second-order derivative, and vice
versa), we expect the solution to be of the form ert

Hence dEl

dt
= rert, and d2El

dt2 = r2ert

So we get that r2ert+ ω2ert = 0
As we know ert ̸= 0 for all values of r, we can simply cancel it out.
This gets r2 = −ω2, and so r = ±iω.
Therefore El(t) = El(0)e±iωt.
However, this gives two solutions - one where the wave travels along the propagation vector
kl, and one against it. Since we are only looking at a single mode, we only keep on solutions,
and simply omit the other. In this case, we omit the solution of the wave travelling against
kl, keeping the solution El(t) = El(0)e−iωt

And so we rewrite our equations for the electric and magnetic fields, substituting in this new
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known variable:

E(r, t) = ϵlEl(0)ei(kl·r−ωlt) + c.c.

B(r, t) = kl × ϵl

ωl

El(t)eikl·r + c.c

= kl × ϵl

ωl

El(0)ei(kl·r−ωlt) + c.c.

(70)

From this we notice again that the direction of propagation, and polarisation of electric and
magnetic fields form an orthogonal/perpendicular set. Moreover, We further notice that the
magnetic field is in phase with the electric, and that its complex amplitude is equal to that of
the electric field divided by the speed of light, c. And so we can describe entirely the dynamics
of this field by the equation:

dEl(t)
dt = −iωlEl(t) (71)

2.8 Canonical Quantization of a Single Mode

We are on the final stretch now of quantizing this mode. Now to show we have confirmed
its dynamics, we will show that the real and imaginary parts of the complex amplitude El(t)
are a pair of canonically conjugate variables. Initially we introduce a normal variable (having
a magnitude of 1), αl(t), such that:

El(t) = iE (1)
l αl(t) (72)

We take E (1)
l as some constant in the dimensions of an electric field, that we will calculate, and

so it is easy to see that the evolution of αl(t) is the same as that of the complex amplitude,
and that our normal variable is dimensionless.
As we see that the evolution of the two is the same, we get that:

dαl(t)
dt = −iωlαl(t) (73)

And this equation also fully determines the dynamics of our field in mode l. We now introduce
the real and imaginary parts of alpha, as follows:

αl(t) = 1√
2ℏ

(Ql + iPl)

αl(t) = 1√
2ℏ

(Ql − iPl)
(74)

Again, by inner product or substitutions, we find:

Ql =
√
ℏ
2(αl(t) + αl(t))

Pl = −i
√
ℏ
2(αl(t) − αl(t))

(75)

Now to find the Classical Hamiltonian of the system, we apply the following integral defining
E and B to be the strengths of the electric and magnetic fields respectively:

Hl = ε0

2

∫
Vl

d3r(E2 + c2B2) (76)
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This is becuase the energy of a field can be defined as the energy density of a field integrated
over its quantization volume, where the energy density for an electric field is equal to the
half of the permittivity of free space (essentially how ’easy’ it is for an electric field to pass
through a vacuum, where ε0 ≈ 8.854 × 10−12m−3kg−1s4A2), multiplied by the square of the
field, UE = 1

2ε0E2. Since we know the relation of the magnetic complex amplitude to that of
the electric field, we can equate c2B2 to E2, and can define E2 to be directly proportional to
the square of the complex amplitude, |El(t)|2. You can check this yourself - if you return to
the original equation describing the electric field, and multiply it by it’s complex conjugate,
you will find that it is equal to twice the square of the magnitude of the complex amplitude:
E(r, t)E(r, t) = |E(r, t)|2 = E2 = 2|El(t)|2.

Hl = ε0

∫
Vl

d3rE2

= 2ε0

∫
Vl

d3r|El(t)|2

= 2ε0Vl|El(t)|2

= 2ε0Vl|E (1)
l |2|αl|2

(77)

Now we choose to define E (1)
l as such:

E (1)
l =

√
ℏω

2ε0Vl

(78)

We choose this formula, since it will make the calulation simpler when we quantize this
equation to retrieve our Quantum Hamiltonian of this mode of light. Indeed, this constant
actually represents the one-photon amplitude of mode l. Using this notation, we find a familiar
expression for our Hamiltonian:

Hl = ℏωl|αl(t)|2

= ωl

2 (Q2
l + P 2

l )
(79)

But what exactly is our quantization volume, you may have been asking? Well, it is simply
the volume in which we define our wave, in this case defined to be a cubic box of length L.

For this to work, we require our box to fufill a few conditions. Since the wave obviously
will continue to propogate outside of the box, we require that the length L is of sufficient
length to capture the full dynamics of one period, since the wave is periodic in all directions
of space.

klxL = 2πnlx

klyL = 2πnly

klzL = 2πnlz

(80)

Where nl is some integer for this mode, and kl the magnitude of the propogation vector in
a specific direction.

Finally, before we proceed with our quantization of this light, we will first show our dy-
namic variables Ql and Pl are canonically conjugate. We apply the Hamiltonian equations
again to obtain the evolution of these two dynamic variables, so that we can then obtain the
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Figure 5: Volume of Quantization

evolution of α(t):

dQl

dt = ∂H

∂Pl

= ωlPl

dPl

dt = − ∂H

∂Ql

= −ωlQl

d
dtα(t) = −iωl(Ql + iPl)

(81)

Indeed, this is exactly the result we obtained from using Maxwell’s equations, our known dy-
namics, and so we conclude that Ql and Pl are canonically conjugate. Undergoing the process
of canonical quantization, and using it to obtain the Quantum Hamiltonian, we conclude:

[Ql, Pl] = iℏ

Ĥl = ωl

2 (Q2
l + P 2

l )
(82)

We thus obtain our quantized relations for α(t) and its conjugate, getting:

α(t) ⇒ â = 1√
2ℏ

(Q̂l + iP̂l)

α(t) ⇒ â† = 1√
2ℏ

(Q̂l − iP̂l)

[â, â†] = 1

(83)

And so we finally get the equation for our Quantum Hamiltonian for this mode of light,
yielding:

Ĥ = ℏω
(
â†â+ 1

2

)
(84)

We have finally canonically quantized a single mode of light. What a journey, wasn’t it?
Perhaps you weren’t expecting such a simple result as this, perhaps it was anticlimactic as
we saw it earlier within the article. However, I find beauty in that. How amazing it is that
we can apply such a simplified to approach to this complex process, everything tying together
nicely, making our lives so much easier in the calculations. Do not worry though if this result
disappointed you. Of course there are more difficult quantizations of fields in Quantum Optics;
if you are curious, looking at a standing wave would be a great start.
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3 Problems

Introduction to Quantum Mechanics

1. (4 marks) Prove that normalizing the wavefunction at t = 0 ensures that it stays nor-
malized for all future t.
(Hint: Consider the following - if the solution is the same for all future time, what must
the integral below be?

d

dt

∫ +∞

−∞
|Ψ(x, t)|2 dx = ?

Show this, and then use the product rule, along with the (time-dependent) Schrödinger
equation and the property that the wavefunction must go to 0 at −∞ and +∞ for the
solution to be normalizable, to prove the above statement.)

2. (3 marks) Prove that:
p̂ = −iℏ ∂

∂x

(Hint: Consider ⟨v⟩ = d⟨x⟩/dt and use some of the equations established in Question
1.)

3. (5 marks) (Problem 1.7 in Griffiths’ ”Introduction to Quantum Mechanics”). Show
that:

d⟨p⟩
dt

=
〈

−∂V

∂x

〉
This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey
the classical laws.

4. (3 marks) Use the fact that Ĥψ = Eψ to show that σH = 0 in a stationary state.

5. (10 marks) (Problem 4.20 in Griffiths’ ”Introduction to Quantum Mechanics” - also
one of my favourites). Consider the earth-sun system as a gravitational analogue to the
hydrogen atom.

(a) What is the potential energy function (replacing Equation 7.1)? (Let mE be the
mass of the earth, and M the mass of the sun).

(b) What is the ”Bohr radius”, ag, for this system? Work out the actual number.
(c) Write down the gravitational ”Bohr formula”, and, by equation En to the classical

energy of a planet in a circular orbit of radius ro, show that n =
√
ro/ag. From this,

estimate the quantum number n of the earth.
(d) Suppose the earth made a transition to the next lower level (n − 1). How much

energy (in Joules) would be released? What would the wavelength of the emitted
photon (or, more likely, graviton) be? (Express your answer in light years - is the
remarkable answer a coincidence?)

Canonically quantising a single mode of radiation

1. Are x (space), and v (velocity) canonically conjugate variables?

2. Apply the Hamiltonian to the ground state |0⟩ to show that its energy is ℏω
2

3. Find the general expression of a state |n⟩, in terms of the creation operator and the
ground state |0⟩
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4 Solutions

An introduction to AC circuits

1. Q: Explain why at high frequencies a capacitor acts as an AC short, whereas
an inductor acts as an open circuit.
This behaviour comes from the definition of the impedance of a capacitor. We know
that a capacitor has an impedance Z = 1/iωC, and so Z is inversely proportional to
ω. As ω increases, Z decreases, meaning that at very high frequences, Z approaches
0, meaning the capacitor acts as a short circuit, allowing AC to flow with almost no
resistance.
Similarly, we can apply this logic to an inductor. The impedance of an inductor is given
by Z = iωL. As ω increases, the impedance increases, meaning at very high frequencies,
the impedance is effectively infinite, blocking AC flow, mimicking an open circuit.

2. Q: In an RLC series circuit, can the voltage measured across the capacitor be
greater than the voltage of the source? Answer the same question for the
voltage across the inductor.
Yes, this is possible, when resonance occurs, and this phenomenon is commonly ex-
ploited in RF circuits for signal amplification. At resonance, the inductive and capacitive
reactances are largest in magnitude but out of phase. This causes an extremely large
current to flow in the circuit, potentially causing the voltage across components to be
much greater than the source voltage.

3. An RLC series circuit with R = 600Ω, L = 30mH and C = 0.050µF is driven
by an AC source whose frequency and voltage amplitude are 500Hz and 50V,
respectively, so: (a) what is the impedance of the circuit, (b) what is the
amplitude of the current in the circuit and (c) what is the phase angle between
the emf of the source and the current?

(a) Using the method outlined in the article, we see that

Z =
√
R2 + (XL −XC)2

= 6300Ω

(b) Using Ohm’s Law for AC circuits

I = V

Z
= 7.94mA

(c) We can calculate the phase angle using

ϕ = arctan XL −XC

R

= −84.5◦

Since the phase angle is negative, the circuit is capacitive, meaning the current leads
the voltage.

Solutions to the problems from this issue will feature in the next issue!
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